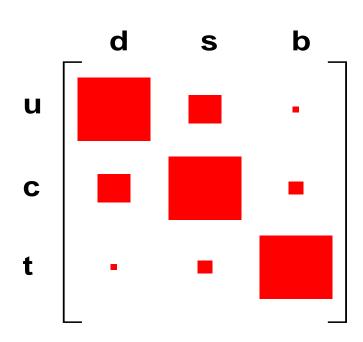
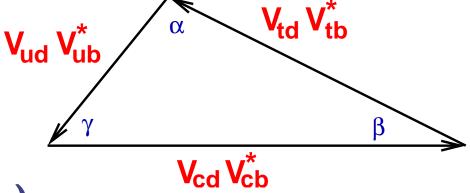
Towards B_s Mixing With CDFII Ivan K. Furić, M.I.T.

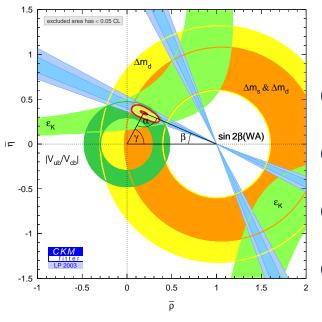

- Tevatron & CDFII
- B mixing measurement setup
- ullet Br($\mathrm{B_s^0}
 ightarrow \mathrm{D_s^-} \pi^+$)
- Prospects

University of Pennsylvania HEP Seminar, Nov 11, 2003

Introduction/Roadmap

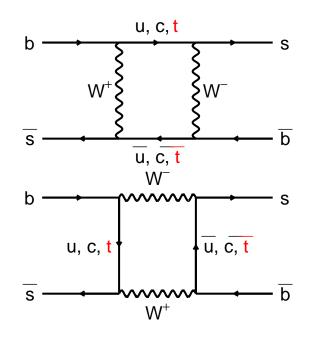

- ullet measurements of B^0 and B_s mixing contribute to our understanding of weak interactions
- combined with measurements from B factories, they test the SM
- flagship measurement for CDF II B program
- overview measurement technique and issues
- ullet focus on the measurement of $Br(B_s o D_s^-\pi^+)$
- determines size and properties of our main sample
- ullet use results of this analysis to project B_s mixing reach

Weak Interactions in the SM



- ullet CKM matrix: W^{\pm} boson couplings to quarks
- ullet area $\sim |V_{ij}|$
- ullet interaction strength $\sim |V_{ij}|^2$
- ullet unitary matrix: $VV^\dagger=1$

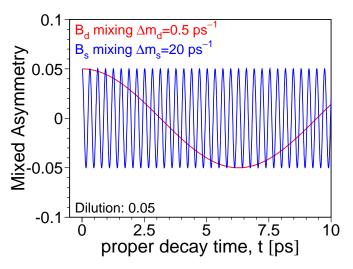
- unitary triangle
- 1 observable phase (\sim area, \sim CP violation)
 - .. how does B_s mixing fit into this?



B Mixing and the Unitarity Triangle

Input for unitarity triangle fits:

- CP violation in kaon system
- ullet $B o\pi l
 u X$ vs B o Dl
 u X
- ullet B_d , B_s meson mixing
- ullet direct measurements of lpha, γ
- ullet both B_d and B_s mesons mix
- ullet ratio of mixing frequencies: measures one side of the unitarity triangle $(|V_{td}/V_{ts}|)$
- ullet indir. meas: $\Delta m_s \leq 24~{
 m ps}^{-1}$
- overconstrain → test SM


$B_{(s)}$ Mixing Measurement Ingredients

Per B meson decay,

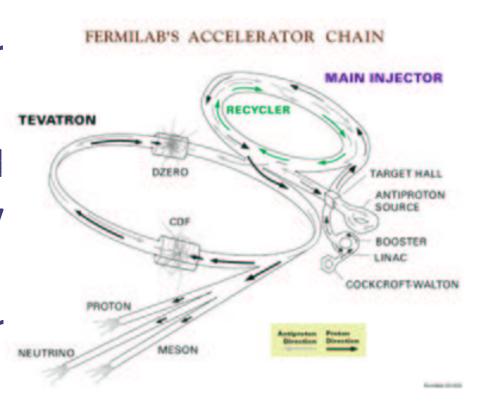
- determine decay flavor [use flavor specific states]
- identify B meson production flavor [flavor tagging]
- measure B proper decay time [ct resolution]

Time-dependant asymmetry:

$$egin{array}{ll} A_{mix}(t) &= rac{N_{unmix}^{obs}(t) - N_{mix}^{obs}(t)}{N_{unmix}^{obs}(t) + N_{mix}^{obs}(t)} \ &= (2p-1) \cdot \cos(\Delta m \cdot t) \end{array}$$

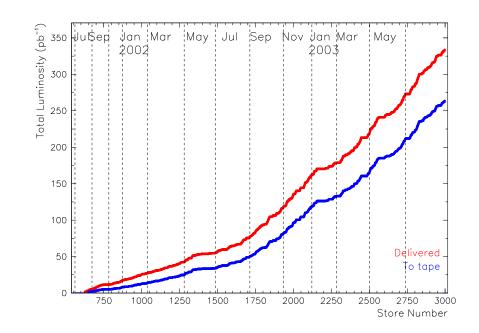
Oscillation amplitude: 2p - 1 = D [dilution]

$$ext{Significance} = \sqrt{rac{\epsilon D^2}{2}} e^{rac{-(\Delta m)\sigma(c au)}{2}} rac{S}{\sqrt{S+B}}$$


Apparatus: Tevatron

Main Injector

- New injection stage for Tevatron
- Ability to accelerate and deliver higher intensity of protons
- More efficient p
 transfer
- \overline{p} recycler (in progress)


• Higher C.M. Energy: Run I: $1.8~{
m TeV}
ightarrow {
m Run~II}~1.96~{
m TeV}$

Tevatron Luminosity

Tevatron Performance

- Below expectation but improving
 - Record luminosity: $4.8 \times 10^{31} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
 - Now consistently $4-7~{
 m pb^{-1}}$ per week

At CDF:

- \bullet 330 pb⁻¹ delivered, 260 pb⁻¹ recorded
- ullet $\sim 200~{
 m pb}^{-1}$ all important systems on
- analyses shown use $12 120 \mathrm{pb}^{-1}$ (depending on when they were done)

Apparatus: The CDF II Detector

Muon Detectors

Inherited from Run I:

- ullet Central Calor. ($|\eta| < 1$)
- Solenoid (1.4 T)

Partially new:

ullet Muon System (extended to $|\eta| < 2$)

Silicon Vertex Detector Central Drift Chamber Calorimeter

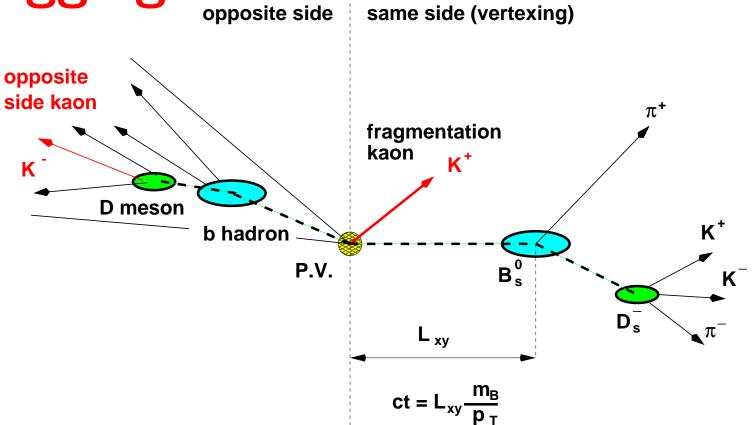
Muon Detectors

Completely new:

- ullet 3D Silicon Tracker ($|\eta| < 2$)
- Faster Drift Chamber
- Plug and Forward Calorimeters, Time Of Flight
- Trigger System (trigger on displaced vertices)

B Mixing in $p\overline{p}$ collisions

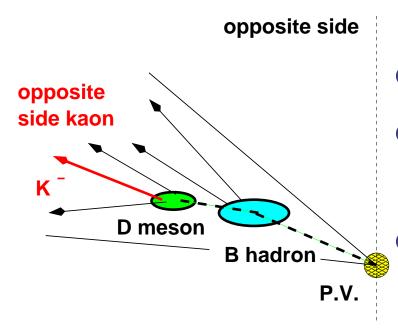
- ullet produce all B species: $B^0, B^+, B_s, B_c, \Lambda_b$
- huge B production cross section: $\sim 100~\mu {
 m b}$ (3 $5~\mu {
 m b}$ "reconstructable") at $4 \cdot 10^{31} {
 m cm}^{-2} {
 m s}^{-1}$, 150 Hz reconstructable B's
- large inelastic ($\sigma \times 1000$) background \Rightarrow triggering very important
- B's boosted in the transverse plane (ct measurement)
- ullet less production flavor information than at e^+e^-
- ullet B^0 mixing routinely done in Run I


Reminder: Measurement Ingredients

Per B meson decay,

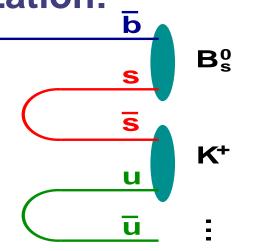
- determine decay flavor [use flavor specific states]
- identify B meson production flavor [flavor tagging]
- measure B proper decay time [ct resolution]

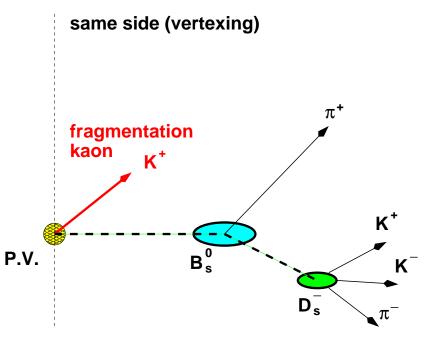
Focus: flavor tagging techniques


Tagging The Production Flavor

- Tagging algorithms identify B production flavor
- Opposite Side Tagging: B's produced in pairs, identify the flavor of the opposite B meson
- ullet Same Side Tagging: hadronization π/K charge is correlated to B_d/B_s production flavor

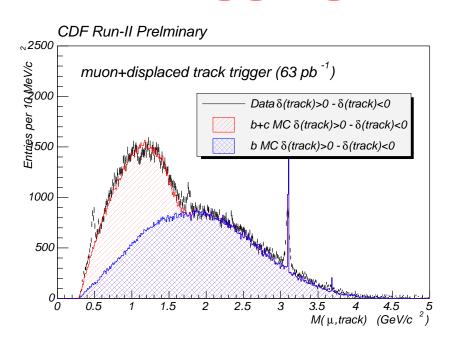
Tagging: Opposite Side Tagging

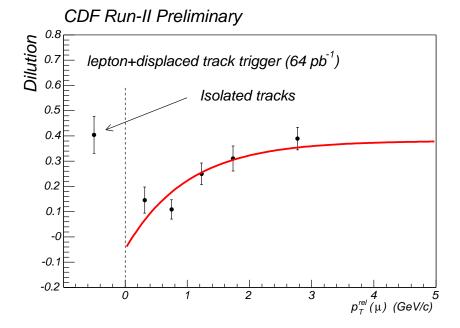

- ullet Lepton Tagging: find lepton from B o D l
 u X
- Jet Charge Tagging: momentum-weighted sum of track charge in B jet (+ displacement)
- ullet Kaon Tagging: assume b
 ightarrow c
 ightarrow s decay, find kaon in B jet



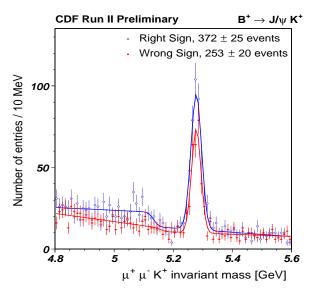
- Difficulties with OST:
- 20-40% opposite side B's outside detector acceptance
- ullet B^0, B^0_s mix o production flavor information lost

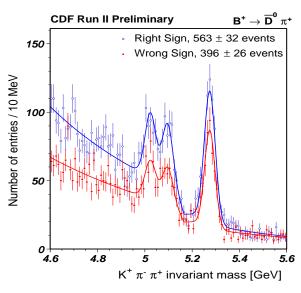
Tagging: Same Side Tagging

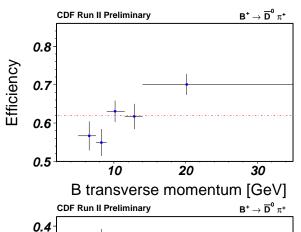

Exploit signature of B_s hadronization:



- ullet 80% of tracks in event are pions [kaons $\sim 10\%$]
- fragmentation tracks are soft → TOF particle ID
- ullet Run I B^0 mixing using pion SST
- expect improvement using TOF particle ID
- ullet combined (OST + SST) tagging power: $\epsilon D^2 \sim 5\%$


Tagging Efforts in Run II





- trigger on lepton + displaced track (SVT)
- ullet signal: l-track intersection ct>0
- ullet background: l-track intersection ct < 0
- require 2 GeV/c < m(l, track) < 4 GeV/c
- ~ 500k inclusive B decays → test taggers
- example: measure dilution of soft muon tag

Tagging Efforts in Run II (cont)

10

20

B transverse momentum [GeV]

30

Asymmetry

- ullet fully reconstructed B^+ decays
- measure efficiency and dilution
- example: same side pion tag
- ullet $B^+ o J/\psi K^+$: $\epsilon D^2 = 2.4 \pm 1.2 (stat)\%$
- ullet $B^+
 ightarrow \overline{D^0}\pi$: $\epsilon D^2 = 1.9 \pm 0.9 (stat)\%$
- ullet Run I $J/\psi K^*$: $\epsilon D^2 = 1.8 \pm 0.4 (stat)\%$

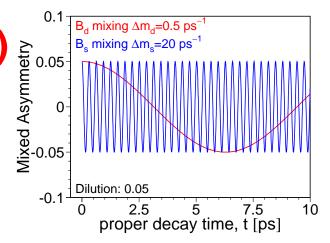
Reminder: Measurement Ingredients

Per B meson decay,

- determine decay flavor [use flavor specific states]
- identify B meson production flavor [flavor tagging]
- measure B proper decay time [ct resolution]

Focus: ct Resolution

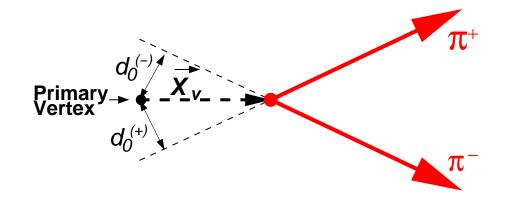
- ullet importance of ct resolution
- triggering on fully hadronic B (and charm) decays
- ullet digression: D meson mass difference measurement
- ullet rate of fully hadronic B_s decays
- ⇒ mixing reach projection


Precise ct Measurements

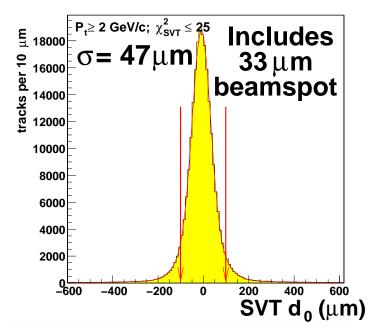
rapid oscillations:

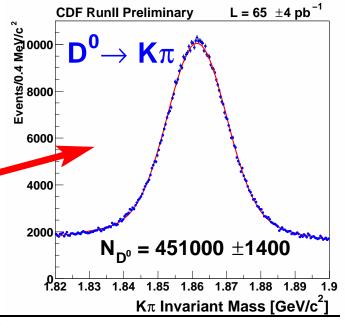
$$\Delta m_s \geq 13.1~\mathrm{ps^{-1}}$$
 (90%CL, PDG) (indir. meas: $\leq 24~\mathrm{ps^{-1}}$)

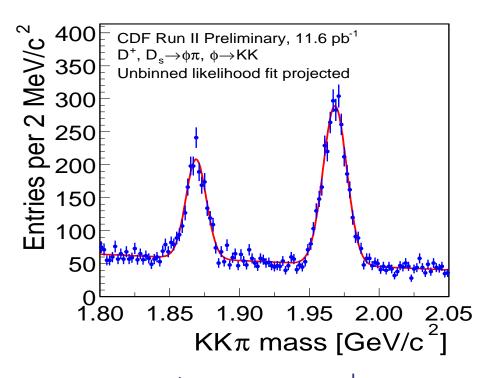
ullet very good ct resolution needed:


$$oldsymbol{\sigma_{ct}} = \left(rac{oldsymbol{\sigma_L}}{oldsymbol{\gammaeta}}
ight) \oplus \left(rac{oldsymbol{\sigma_{\gammaeta}}}{oldsymbol{\gammaeta}}
ight) \cdot ct$$

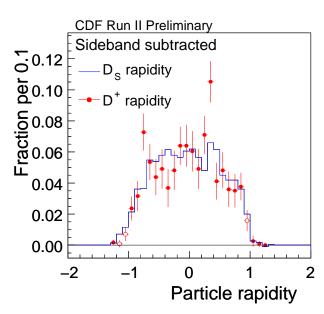
- ullet semileptonic decays: B momentum error $\sim 15\%$
- ullet hadronic decay ($B_s o D_s \pi$) negligible ($\sim 0.5\%$)
- ullet using base Runll silicon : 60 fs $\Delta m_s \sim 17~{
 m ps}^{-1}$
- ullet layer of Si on beampipe: 45 fs $\Delta m_s \sim 22~{
 m ps}^{-1}$
- Problem: how do we trigger on these decays?

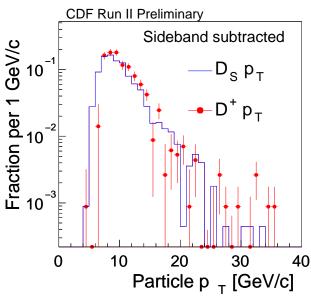

Triggering on displaced tracks


- ullet trigger $\mathrm{B}
 ightarrow \pi\pi, \mathrm{B_s}
 ightarrow \mathrm{D_s}\pi$
- challenge: read out SVX and track at 10's of kHz → SVT

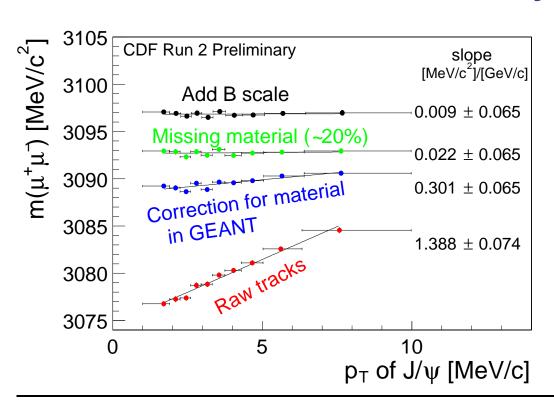


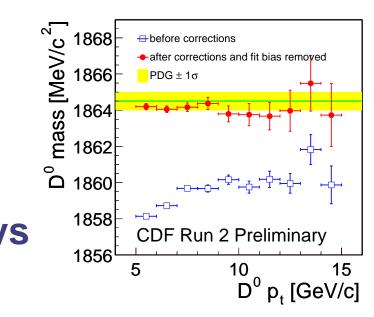
- huge charm samples gathered
- with small int. luminosity,
 competitive charm analyses

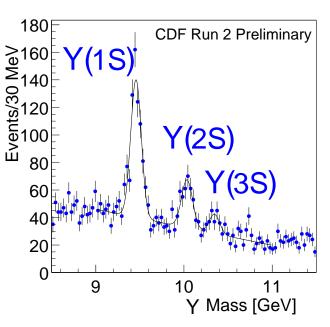




D Meson Mass Difference


- ullet 1.4k $\mathrm{D^+}, 2.4$ k $\mathrm{D_S^+} o \phi \pi^+$
- ullet mass resolution $\sim 8\,{
 m MeV}/c^2$
- similar kinematics
- expect small syst. errors





Momentum Scale Calibration

- ullet study J/ψ 's to calibrate:
 - energy loss in detector
 - magnetic field value
- crosscheck with other decays

Mass Difference Result

 $m(D_s^+) - m(D^+) = 99.41 \pm 0.38 (stat) \pm 0.21 (syst)~{
m MeV}/c^2$

PRD 68 (2003) 072004 - First Tevatron Run II publication systematics small, dominated by bkg model:

Effect	$Syst.[\mathrm{MeV}/c^2]$
fitting	0.14
event selection	0.11
momentum scale	0.10
tracker effects	0.06
calibration procedure	0.03
Total	0.21

- ullet PDG '02: $99.2 \pm 0.5 \; \mathrm{MeV}/c^2$
- CLEO2 (1998): $99.5 \pm 0.6 \pm 0.3~{
 m MeV}/c^2$
- BaBar (2002): $98.4 \pm 0.1 \pm 0.3~{
 m MeV}/c^2$

Reminder: Measurement Ingredients

Per B meson decay,

- determine decay flavor [use flavor specific states]
- identify B meson production flavor [flavor tagging]
- measure B proper decay time [ct resolution]

Focus: Rate of fully reconstructed hadronic B_s decays

use as input for mixing reach projection

Fully Hadronic B_s decays

- ullet good for B_s mixing because of good ct resolution
- ullet $B_s^0 o D_s^- \pi^+$ "golden mode"
 - fully hadronic, flavor specific
 - few tracks → "easy" to trigger, reconstruct
 - $-D_s^- o \phi^0\pi^-$, $\phi^0 o KK$ narrow resonance (cut on KK invariant mass o good S/N)
- first observed at LEP
- branching fraction? (PDG: <13%, 95% CL) (determines number of B_s available for mixing)
- ullet initially assumed $\sim Br(B^0 o D^-\pi^+)$
- ullet background composition? S/B?
- answers: branching fraction measurement

Rate of B_s vs B^0

- ullet want to understand rate of $B_s o D_s^- \pi^+$
- ullet compare to similar decay $B^0 o D^- \pi^+$
- ullet count how many B_s vs B^0 are reconstructed
- what is different?
- ullet rate of B_s production different from B^0
- ullet f_s/f_d probability for b to hadronize as B_s/B^0
- ullet final state $D_s o\phi\pi$ vs $D^- o K^+\pi^-\pi^-$
- account for by using PDG ratio of BR's
- ullet kinematics slightly different o efficiency?
- $\bullet \ \epsilon = \epsilon(acc) \cdot \epsilon(det) \cdot \epsilon(trig) \cdot \epsilon(rec)$
- will need to consult Monte Carlo simulation for this

$Br(B_s^0 o D_s^- \pi^+)$ Measurement: We measure the ratio of branching fractions:

$$rac{f_s}{f_d} \cdot rac{Br(B_s^0 o D_s \pi)}{Br(B^0 o D^- \pi)} = rac{N(B_s^0)}{N(B^0)} \cdot rac{\epsilon(B^0)}{\epsilon(B_s^0)} \cdot rac{Br(D^+ o K\pi\pi)}{Br(D_s o \phi\pi,..)}$$

- ullet control sample: $B^+ o \overline{D^0}\pi^+$ and corresponding BR relative to $B^0 o D^-\pi^+$
- $N(B_s^0)$, $N(B^+)$, $N(B^0)$ obtained from fits to data
- ullet $\epsilon(B^0)$ / $\epsilon(B^0_s)$, $\epsilon(B^0)/\epsilon(B^+)$ from realistic MC
- ullet $BR(D^-/D_s^-/D^0)$ are taken from PDG

Key issues:

- ullet reconstruction of B mesons with good S/B
- ullet robust and correct extraction of N(B)
- realistic trigger and analysis simulation

Typical B meson selection cuts:

$$\bullet \ \chi^2_{r,arphi}(D) < 14$$

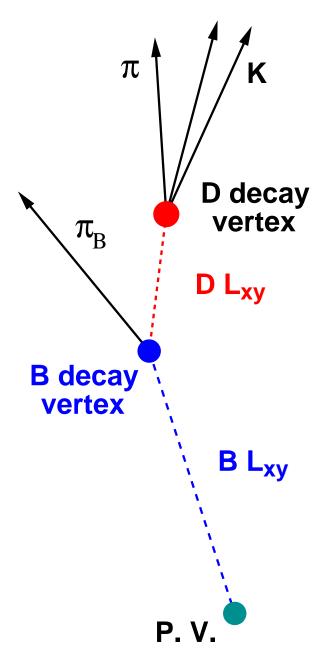
$$ullet \chi^2_{r,arphi}(B) < 15$$

$$ullet \ p_T(D) > 3.5 \ {
m GeV}/c$$

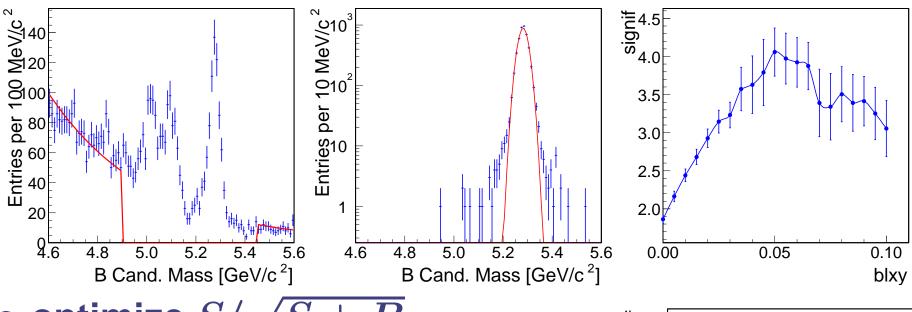
$$ullet \ p_T(B) > 5.5 \ {
m GeV}/c$$

$$ullet L_{xy}(B) > 400 \mu \mathrm{m}$$

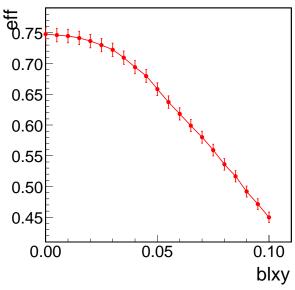
$$ullet L_{xy}(B o D)>-150\mu{
m m}$$


$$ullet$$
 $\Delta R(D,\pi_B) < 1.5$

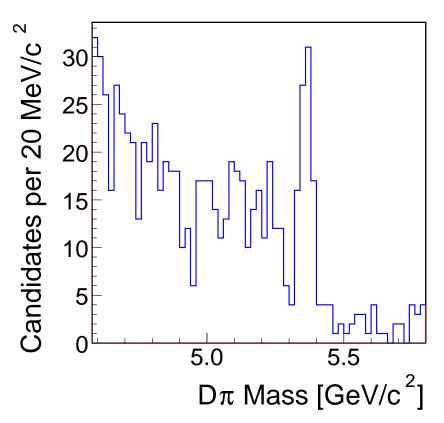
$$ullet \ p_T(\pi_B) > 1.6 \ {
m GeV}/c$$

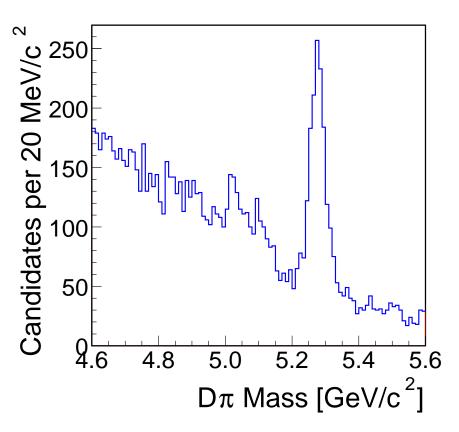

$$ullet |d_0(B)| < 80 \mu \mathrm{m}$$

ullet ϕ^0 mass cut for B^0_s


($1010~{
m MeV}/c^2 < m(\phi^0) < 1028~{
m MeV}/c^2$)

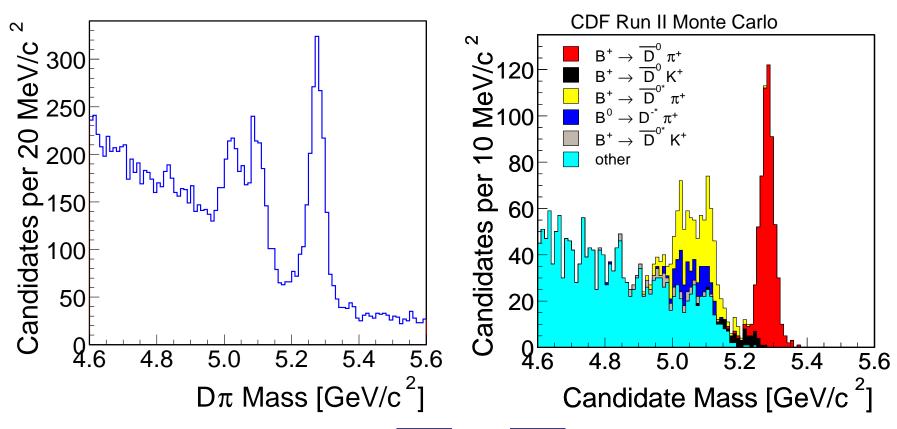
B Meson Selection Optimization:


- ullet optimize $S/\sqrt{S+B}$
- keep efficiency high
- background estimate from data
- signal estimate from scaled MC
- similar cuts from both studies



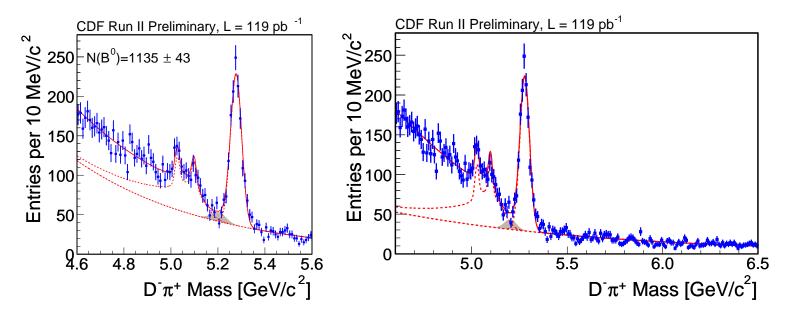
B Meson Mass Spectra:

$$B_s^0 o D_s^-\pi^+$$

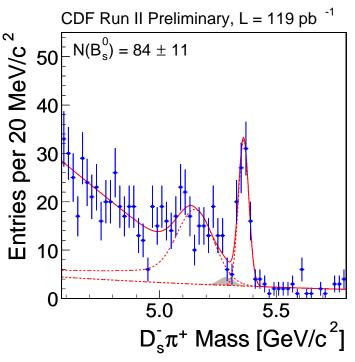

$$B^0 o D^-\pi^+$$

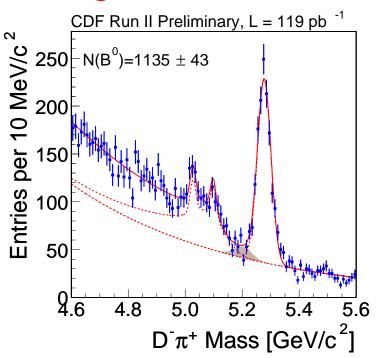

- ullet B mass peaks are quite clean (S/N>2:1)
- spectra have interesting structures
- use Monte Carlo to study background shapes

Background Shapes $(B^+ o D^0 \pi^+)$

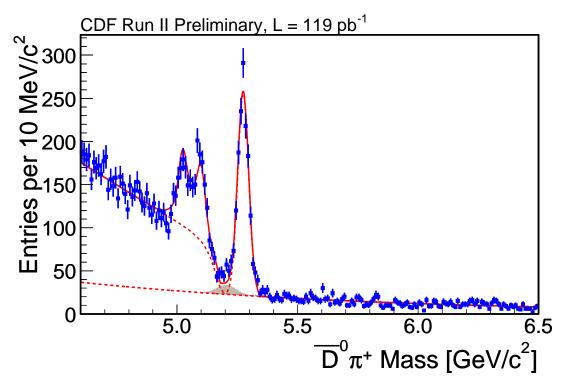

- ullet Monte Carlo: $B o \overline{D^0}X, \overline{D^0} o K^+\pi^-$
- GEANT simulation of detector response
- realistic trigger simulation
- ullet spiky structures are signatures of D^* polarization

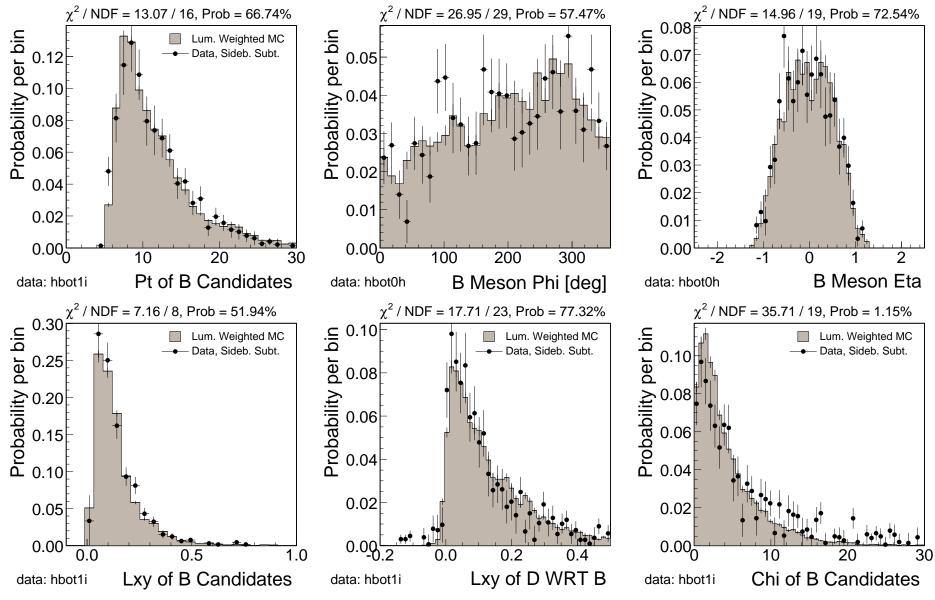
Fitting With Templates:


- decompose background into groups with similar features (spiky, Cabbibo suppressed, ..)
- based on Monte Carlo, create analytical templates
- extract shape parameters from MC
- keep shape parameters fixed in fit to data
- combinatorial background → single exponential

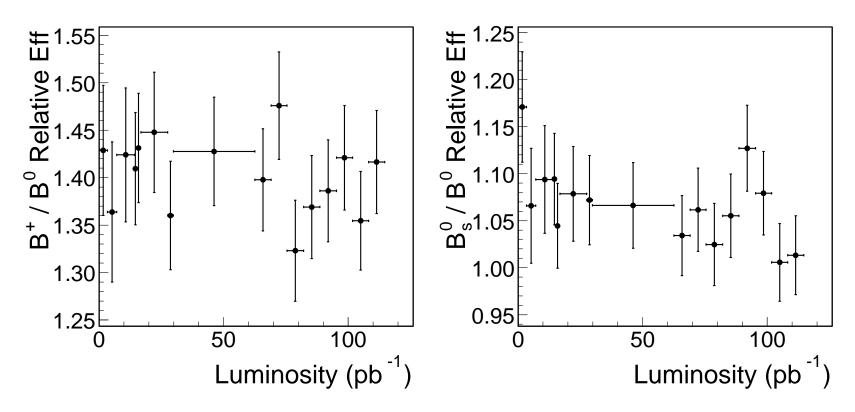

Fit Result N(B) Stability

- how reliable is our counting method?
 (assign counting systematic error)
- vary shape parameters for templated background
- extend fit range, fix continuum parametrization
- ullet fits result change up to $\sim 7\%$
- can improve background parametrization


Fit Results for B_s^0 and B^0


- ullet counting systematic error $\sim 7\%$
- ullet $84\pm11(stat)\pm4(syst)$ B_s candidates
- ullet $1135 \pm 43(stat) \pm 80(syst)~B^0$ candidates
- ullet this determines the ratio $N(B_s)/N(B_d)$
- ullet remaining work: correct for detector effects (different efficiencies for $B_s,\,B^0)\Rightarrow$ from MC

Monte Carlo Validation Method


- high and low-mass sideband: different composition
- subtract only high-mass sideband
- but scale up number of events (using the exponential fit for the comb. background)
- ullet check relevant distributions for both B^0 and B^+
- in addition, check N-1 cut efficiencies

Monte Carlo Validation

check many variables, good agreement for most

Stability of Efficiency Ratios:

- trigger was constantly being upgraded
- concern: this may affect the efficiencies
- the ratio of total efficiencies is stable regardless of trigger efficiency change
- measurement quite robust to trigger conditions

Systematic Uncertainties:

Effect	Syst. Unc.
$\overline{\ B\ p_T}$ spectrum	±1.5 %
XFT simulation	± 0.1 %
ϕ^0 mass cut	± 1.0 %
cut efficiencies	$\pm 5.0~\%$
B_s^0 lifetime	±1.4 %
$oldsymbol{D_s^+}$ lifetime	$\pm 0.3~\%$
$oldsymbol{B^0}$ lifetime	± 0.4 %
D^+ lifetime	$\pm 0.04\%$
$\overline{B^0_s}$ fitting	±5.0 %
$oldsymbol{B^0}$ fitting	±7.0 %
Total	±10.2 %

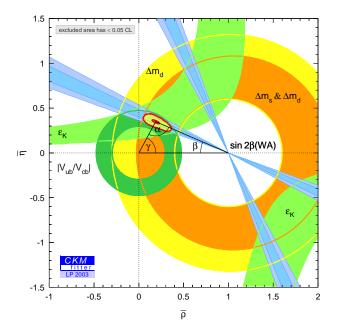
Measurement Results:

$$rac{f_s}{f_d} \cdot rac{Br(B_s^0 o D_s^- \pi^+)}{Br(B^0 o D^- \pi^+)} \ = 0.35 \pm 0.05 (stat) \pm 0.04 (syst) \ \pm 0.09 (BR)$$

Using the world average value for $\frac{f_s}{f_d}\left(\frac{f_s}{f_d}=0.26\pm0.03\right)$ we obtain:

$$egin{aligned} rac{Br(B_s^0 o D_s^- \pi^+)}{Br(B^0 o D^- \pi^+)} &= 1.4 \pm 0.2 (stat) \pm 0.2 (syst) \ \pm 0.4 (BR) \pm 0.2 (PR) \end{aligned}$$

Our measurement assumes the same fragmentation model for B_s^0 and B^0 mesons.


... now we can estimate our $oldsymbol{B}_s$ mixing reach

B_s^0 Mixing Reach Estimates

- Current performance:
- $S = 1600/\text{fb}^{-1}$, S/B = 2:1
- ullet $\epsilon D^2=4\%$, $\sigma(ct)=67~\mathrm{fs}$
- With "modest" improvements:
- $S = 2000/{
 m fb^{-1}}$, S/B = 2:1 (improve trigger, more modes)
- ullet $\epsilon D^2=4\%,\,\sigma(ct)=50~\mathrm{fs}$ (event by event prim vertex, Si on beampipe)
- ullet 3σ sensitivity for $\Delta m_s=18~{
 m ps^{-1}}$ with 1.3 ${
 m fb^{-1}}$
- ullet 5σ sensitivity for $\Delta m_s = 18~{
 m ps}^{-1}$ with 1.7 ${
 m fb}^{-1}$
- ullet 5σ sensitivity for $\Delta m_s = 24~{
 m ps}^{-1}$ with 3.2 ${
 m fb}^{-1}$
- this is a difficult measurement

Conclusions

- B_s mixing at CDF II at a glance:
- initial work has begun
- reconstructed signal mode, understand rate
- work on tagging currently in progress, promising

- not a particle discovery, 3σ is relevant!
- ullet we want to constrain the unitary triangle
- expect to surpass world limit with 1 year of data
- ullet beyond that, need to work on ct resolution and taggers to further extend reach
- push for more luminosity and gather more data

B Mixing: $p\overline{p}$ vs $\Upsilon(4S)$

Quantity	$\Upsilon(4S)$	$p\overline{p}$
Mixing B Mesons	$oldsymbol{B^0}$	$oldsymbol{B^0_s, B^0_s}$
$\sigma(B)$	$\sim 1~\mathrm{nb}$	$\sim 100~\mu\mathrm{b}$
$\sigma(B)/\sigma(other)$	$\sim 1:5$	$\sim 1:1000$
ct resolution	$\sim 1.1~\mathrm{ps}$	$\sim 70~\mathrm{fs}$
tag. power (ϵD^2)	$\sim 30\%$	$\sim 5\%$

- ullet higher B production cross section, produce B_s
- immersed in light quark background
- triggering much more important
- B's boosted in the transverse plane
- less production flavor information